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Ah&met-The generation of approximate solutions for nonlinear heat conduction problem using the 
method of optimal linearization is considered. Examples are used to investigate the merit of this method. 
Radiation cooling due to arbitrary power radiation from semi-infinite solid with temperature dependent 

material properties is discussed also. 

NOMENCLATURE 

heat capacity ; 
00 

constant parameter ; 
quadratic error integral ; 
thermal conductivity ; 
characteristic radiative exponent ; 
surface temperature ; 
penetration depth ; 
temperature ; 
time ; 
space coordinate ; 
dimensionless surface temperature; 
dimensionless parameter ; 
penetration depth ; 
difference term; given small time 
interval ; 
thermal diffusivity ; 
constant adjustable parameter ; 
density ; 
dimensionless parameter ; 
dimensionless time. 

INTRODUCITON 

APPROXIMATE analytical methods of solution to 
heat conduction problems have received con- 

siderable attention in the last few years. This 
attention has been due to the necessity of includ- 
ing material property variations into the study of 
heat conduction problems. 

In this note the method of optimal lineariza- 
tion is used to solve differential equations 
governing the nonlinear transfer of heat. This 
method was first introduced by West [l] and 
Blaquiere [2] in order to solve ordinary dif- 
ferential equations in nonlinear vibration theory 
(see also [3]). It seems desirable to investigate 
its usefulness in achieving solutions to problems 
in nonlinear heat conduction. The method is, 
however, equally appropriate for solving any 
problem governed by nonlinear diffusion-type 
equation. The solutions obtained with the help 
of this method, although not exact, are often 
sufficiently accurate for engineering purposes. 

METHOD AND BE%JLTS 

(a) Temperature-dependent thermal conductivity 
The first application we will make of the 

optimal linearization method is to thermal 
conduction in a semi-infinite solid isotropic 
material. This solid is of uniform temperature 
T = 0 for t < 0, and its surface x = 0 undergoes 
a stepwise temperature change T = To = const. 
at the time t = 0. 
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The energy equation for the problem can be 
written in the form 

pcg=; k(T); [ 1 
(1) 

subject to the following conditions 

T(0, t) = T, 
T(x, 0) = 0. (2) 

The thermal diffisivity k(T) is assumed to be 
a linear function of temperature 

(3) 

where k, and a are given constants. 
Together with equation (1) consider the 

following equation 

2 

peg= g (4) 

where ,I is a constant adjustable parameter 
which has to be chosen in such a way that the 
linear equation (4) approximates equation (1) 
in optimal sense. To find this parameter we first 
form the difference of the equations (1) and (4) : 

where 

k’(T) = !!g 

and consider the integral 

where 
where the time and space intervals depend on 
the problem in consideration. 

Suppose that there exists a known function 
ko KZ-. 
PC 

(13) 

T = Ii/(x, t) (7) The equation (12) represents the solution of 

which satisfies the boundary and initial con- 
ditions (2). Substituting (7) into (6) and perform- 
ing integration the expression (7) will be the 
function of 1 only 

Z(A) = Al2 - 21(B + C) + D (8) 

where 

1 
2 dxdt. 

(9) 

The optimal value of L may be found from the 
equation 

am o 
--= 

an 

i.e. 

Hence, the optimal value of A depends on the 
form of chosen function +(x, t) in (7), and the 
linear differential equation with the constant 
coefficients (4) should be considered “optimal” 
subject to T = t,b(x, t). To be more specific, 
suppose the function (7) in the form 

T(x, t) = To - erf --L-- 
2JW) > 

(12) 
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boundary value problem (1) and (2) for k(T) = I O 

k, = const. 
FIG 1 

0.9 

Substituting (3) and (12) into the first three 
terms of (9) we will get after integration with O8 

x 

aa 

respect to x from x0 = 0 to x1 = 00. 07 
s 

- EX0.3 

A = T;&(t) 

B = 3s)$(t) 

Tiko C=x 

where 

+a [q8(+ 

1 

+12&r) 11) &) 

(14) 

FIG. 1. 

and 

C, = 7 erf (s) exp [ - 2sz] ds 
0 

02455405. 

Hence from (11) we have 

1 = k,(l + 09076 a) 

and initial and boundary conditions are taken 
to be of the same type like in case (a). 

(17) The problem is to find the best value of 

and the linear differential equation (4) is of the 
parameter 1 that the linear equation 

form A!?, k!? (22) 
pc g = k,(l + 09076 a) 2. 

at ax2 
(18) 

approximates in optimal way the nonlinear 
The solution of (19) subject to (2) is equation (21) together with the initial and 

J(l+O;O76 a) > 

boundary conditions. The difference term will 

(19) thus be 

where &=A g -c(T)g 
0 at at * 

(23) 

(b) Temperature-dependent heat capacity 
Let us consider the case when the heat capacity 

of material is temperature dependent. The 
governing differential equation is 

(16) 
c(T);= kg (21) 

z=&iij. (20) As before, forming the mean square of the 

This closed form solution is plotted in Fig 1, and 
difference term (6) we will have : 

compared with the exact solution of Yang [4]. I = 12A - 212B + C (24) 
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where 

A= 

(25) 

Let us suppose that the heat capacity is of the 
form 

c = c() ( 1 1,; 
0 

where co and To are given constants and suppose 
that the temperature distribution (7) is of the 
form 

(27) 

where 

and K = k/c,. 

a = 3.16 (28) 

The expression (27) is the approximate solu- 
tion of equation (21) for c(T) = co = const, 
obtained by the help of variational method [S]. 
The term a&t) = 6 is the penetration depth. 

Substituting (27) and (26) into (25) and 
performing integration with respect to x from 
zero to 6 = a&) the expression (24) becomes 

I = E(+P - $con + D) #Q(t) (29) 

where E and D are some constants and 

From the condition 

ar -_= 
an O 

we have 

1 = +co. (30) 

Hence, the linear equation (22) is of the form 

BT ,a2T 
~=“Q 

where 

k 
lc‘=&-. 

co 

However, the solution of this equation, accord- 
ing to (27) is 

T=To (I-&J 
and the corresponding penetration depth is 

6 = a&&) = 2.78&t). (31) 

The same problem was solved by variational 
techniques in [S] and [6]. The corresponding 
values for penetration depth using quadratic 
profiles are 

6 = 2*80J(Ict) [5] 

6 = 2+97&t) [6] 

it is seen that there is quite satisfactory correla- 
tion between all three techniques over complete 
range x and t. 

(c) Sur$ace radiation tith variable thermal pro- 
perties-short time solution 

The method of optimal linearization can be 
used in more complex situations in which the 
boundary conditions as well as the transport 
equation are both nonlinear. This section will 
treat the case where the flux condition depends 
upon a power of the surface temperature and at 
the same time, the heat capacity is a linear 
function of temperature. The case with constant 
thermal properties was discussed by Lardner in 
[7], using variational method. The Lardner 
solution will be used as the trial solution in the 
case of variable thermal properties. 

Let us consider the surface radiation cooling 
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of a semi-infinite solid. The initial temperature 
is T’,‘, while the ambient temperature is absolute 
zero. The problem we wish to solve is to find the 
approximate solution of partial differential 
equation 

(31’) 

together with the nonlinear boundary condition 

k, g = - hT” on the surface x = 0 (32) 

where 

(33) 

and m, co, cr, k, and h are given constants. 

Let us find the constant parameter L in such a 
way that the linear equation 

AaT,, CT 
at 0ax2 

approximates in optimal way the nonlinear 
equation (31’) together with the nonlinear 
boundary condition (32). 

Substituting (34) into (25) and (24), performing 
integration with respect to x from zero to q2 and 
with respect to t from zero to E (E is the range of 
the small time interval for which the solution 
(34) is valid), the condition al/a1 = 0 yields 

1 = co . (37) 

Hence, the temperature distribution is of the 
form : 

The Lardner asymptotic solution for CJ = 0 The penetration distance and surface tempera- 
md t + 0 has the form ture are of the form 

T=T,- 

where 

41 = T, - $$$‘(t): b = 1.120 (35) ;zr,, 

is the surface temperature, and h2 h2 r = -T;‘“-“r. r1 = _ 
(36) Gko ' coke 

T;'m-uE 

11 

is the depth of penetration. 
y = c Tg(m- 1) q2a 

0 
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FIG. 2. 

For 0 = 0 the solution (39) and (40) are identical 
with the asymptotic short time solution given 
by Lardner. Figures 2 and 3 present the surface 
temperature and penetration depth for CT = 
f 05 and r1 z 05. It is interesting to note that 
the cooling of the semi-infinite slab proceeds 
more slowly in the case Q > 0. For the case 
0 < 0 the situation is opposite. Unfortunately 

0 =+0.5 

cr=o 

o--o.5 

0.2 0.4 O-6 G 

FIG. 3. 

this problem is not capable of an exact solution 
and direct comparison is impossible. 

REMARKS 

The primary aim of this paper has been to 
demonstrate that the method of optimal 
linearization can be advantageously applied to 
the heat transfer problem. This method reduces 
the nonlinear boundary value problem to a 
linear boundary value problem whose solution 
can frequently be expressed in closed analytical 
form. The results have been presented in 
graphical form and comparisons have been made 
with other approximate solutions whenever they 
are available. Agreement in all cases was found 
to be good. 

In addition to the accuracy, which is most 
important in any approximate solution, the 
method of optimal linearization has been shown 
to provide a systematic means of deducing the 
temperature history. 

On the basis of the examples considered here 
it must be concluded that the method of optimal 
linearization can serve as a useful vehicle for 
obtaining approximate solutions in heat transfer 
analysis. 

1. 

2. 

3. 

4. 

5. 

6. 
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APPLICATION DE LA METHODE DE LINEARISATION OPTIMALE AU PROBLEME DU 
TRANSFERT THERMIQUE 

R6stun&-On considbre la generation de solutions approcbees du problbme de conduction thermique non 
linbire par la methode de linearisation optimale. Dam quelques exemples, on recherche l’int&& de cette 
mbthode. On discute aussi le refroidissement par un rayonnement, a puissance arbitraire, dun solide 

semi-infini B proprittC dependantes de la tempkrature. 

ANWENDUNG DER OPTIMALEN LINEARISIERUNGSMETHODE AUF DAS 
WARMEUBERTRAGUNGSPROBLEM 

Zusammenfassmtg--Es wird tiber die Erzeugung von Nithenmgsliisungen fiir das nichtlineare WPrme- 
leitungsproblem unter Verwendung der Methode der optimalen Linearisation berichtet. Anhand von 
Beispielen wird untersucht, welchen Vorteil diese Methode bietet. Diskutiert wird femer der Fall der 
Strahlungskiihlung infolge Abstrahlung von einem halbunendlichen Kbrper tinter Berilcksichtigung 

temperaturabtingiger Materialeigenschaften. 

HPUMEHEHHE METOAA OHTHMAJIbHOH JIBHEAPH3AHHH EC HPOBJIEME 
TEIIJIOHEPEHOCA 

ibEOTBqEISI--C IIOMOIJJbIO MeTOAa OItTHMaJIbHOi JlHHeapB3aI&Hli CTPOHTCR qWI6nnHteHHbIe 
pemeaun aagasa rrenarreinog ~ennonpono~riocTu. npelJMymeCTBa AaHHOrO MeTOga IIPO- 
~eMOHCT~H~OBaHbIHa~p~Mepax.~aKHteo6cy~~aeTc~~y~~CTOeox~aHcAeH~e nOny6eCKOHeY- 
HOrO TBepAOrO TeJIa, XapaKTepHCTHKEl MaTepHana KOTOPOFO 3aBkiCRT OT TeMIIepaTypLd, a 

MOmHOCTb Il3Jly=IeHHH MO?KeT 6bITb npOH3BOnbHOZt. 


