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Abstract—The generation of approximate solutions for nonlinear heat conduction problem using the

method of optimal linearization is considered. Examples are used to investigate the merit of this method.

Radiation cooling due to arbitrary power radiation from semi-infinite solid with temperature dependent
material properties is discussed also.

NOMENCLATURE
¢, heat capacity;

@

2 —a244.
erf x, —ﬁje dA;

h, constant parameter;

I, quadratic error integral ;

k, thermal conductivity;

m, characteristic radiative exponent ;

41, surface temperature ;

q2 penetration depth;

T, temperature;

t, time;

X, space coordinate;

z, dimensionless surface temperature;;

o, dimensionless parameter;

o, penetration depth;

e, difference term; given small time
interval;

K, thermal diffusivity;

A, constant adjustable parameter ;

p, density;

o, dimensionless parameter ;

T, dimensionless time.

INTRODUCTION

APPROXIMATE analytical methods of solution to
heat conduction problems have received con-

siderable attention in the last few years. This
attention has been due to the necessity of includ-
ing material property variations into the study of
heat conduction problems.

In this note the method of optimal lineariza-
tion is used to solve differential equations
governing the nonlinear transfer of heat. This
method was first introduced by West [1] and
Blaquiere [2] in order to solve ordinary dif-
ferential equations in nonlinear vibration theory
(see also [3]). It seems desirable to investigate
its usefulness in achieving solutions to problems
in nonlinear heat conduction. The method is,
however, equally appropriate for solving any
problem governed by nonlinear diffusion-type
equation. The solutions obtained with the help
of this method, although not exact, are often
sufficiently accurate for engineering purposes.

METHOD AND RESULTS

(a) Temperature-dependent thermal conductivity

The first application we will make of the
optimal linearization method is to thermal
conduction in a semi-infinite solid isotropic
material. This solid is of uniform temperature
T = 0fort < 0, and its surface x = 0 undergoes
a stepwise temperature change T= T, = const.
at the time ¢t = 0.
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The energy equation for the problem can be
written in the form

oT 0 oT
pea =5 [k(T)g] 1)
subject to the following conditions
T0O,0) =Ty
T(x,0) = 0. @

The thermal diffusivity k(T) is assumed to be
a linear function of temperature

T

un=%<

where k, and « are given constants.
Together with equation (1) consider the
following equation

oT 0T
pCE = /Iai (4)

where A is a constant adjustable parameter
which has to be chosen in such a way that the
linear equation (4) approximates equation (1)
in optimal sense. To find this parameter we first
form the difference of the equations (1) and (4):

oT, 0*T T 0 cT
e (*’ T’EE’??F)' A5 T o [’“”a—x]

*T oT 62
=).a—5—k(T)< ) k(T) (5)

where

dK(T)
K(T) = 3T
and consider the integral

‘7 oT &*T
- 2 dx
I(j') ‘j j’ € Q” 'I"ax,) axz) dt (6)
to X0

where the time and space intervals depend on
the problem in consideration.
Suppose that there exists a known function

T=y(x,1) ™)
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which satisfies the boundary and initial con-
ditions (2). Substituting (7) into (6) and perform-
ing integration the expression (7) will be the
function of A only

I(A) = 422 — 2B+ C)+ D 8)
where
2
A =s 50 a T dxdt
t] x1

B

5 k’(T) 6T> dxdt

5
e fun 1) s

0
X1

D= S S {k(T)(aT) + KT) 627} dxdt.

X0

)

The optimal value of A may be found from the
equation

61(1)
1
i (10)

ie.

(11)

Hence, the optimal value of A depends on the
form of chosen function Y(x, t) in (7), and the
linear differential equation with the constant
coefficients (4) should be considered “‘optimal”
subject to T=y(x,t). To be more specific,
suppose the function (7) in the form

T(x,t) = T, <1 erf-‘-> (12)

2/(xt)
where

_ko

pc

The equation (12) represents the solution of

(13)
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boundary value problem (1) and (2) for k(T) =
ky = const.

Substituting (3) and (12) into the first three
terms of (9) we will get after integration with
respect to x from x, = 0 to x; = .

2 /@
A=Tg 8\/
_ Tikoo
=i N n)¢() (14)
_Téke fy@m) | [Yem . (C
‘T{’z_”‘[ 2 ‘8<7‘
1
gy 40
where
’ de
é(1) =§ G (15)
and
C, = t]‘oerf(s) exp [ — 2s%] ds
1
\/(2 jtan” \/(2) 0:2455405.  (16)

Hence from (11) we have
A = ko(l + 09076 o) 17)

and the linear differential equation (4) is of the
form

oT 2
pcg— = ko(1 + 09076 ct)a T (18)

The solution of (19) subject to (2) is

¥4
T=T, {1 —erf——--—xon-—
o ( e 09076 a)) (19)
where

7= (0
N )

This closed form solution is plotted in Fig. 1, and
compared with the exact solution of Yang [4].

1113

F16 1

— Exact
—-— Approximative

k'ke

02 04 06 08 |0 1'2 -4 16 18 20

FiG. 1.

(b) Temperature-dependent heat capacity
Let us consider the case when the heat capacity
of material is temperature dependent. The
governing differential equation is
oT | 0°T

@1
and initial and boundary conditions are taken
to be of the same type like in case (a).
The problem is to find the best value of
parameter 4 that the linear equation
oT 02T

21 =k

7 a2 (22)

approximates in optimal way the nonlinear
equation (21) together with the initial and
boundary conditions. The difference term will

thus be
oT oT
e=4 (5?) - C(T)E

As before, forming the mean square of the
difference term (6) we will have:

I1=24-21B+C

(23)
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where

to Xo

Iy Xt

B =S SC(T) <§g>2 dxdt

fo Xo

(25)

1y Xy

C =S S [C(T)%Z]zdxdt.

o Xo

Let us suppose that the heat capacity is of the

form
(1+T
c=c =
¢ T

where ¢, and T are given constants and suppose
that the temperature distribution (7) is of the

form
2
x
T=T, (l — a—_—\/(m)>

a=316

(26)

27

where
(28)

and k = k/c,.

The expression (27) is the approximate solu-
tion of equation (21) for oT) = ¢y = const,
obtained by the help of variational method [5].
The term a,/(xt) = J is the penetration depth.

Substituting (27) and (26) into (25) and
performing integration with respect to x from
zero to & = a,/(xt) the expression (24) becomes

I = E}4* - §col + D) ¢4(0) (29)

where E and D are some constants and

31

dt
o4(t) =S a
to
From the condition
i,
1 —0

aA
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we have
A= 3c,. (30)

Hence, the linear equation (22) is of the form

oT  ,0°T

ot ox?
where

K = %5
Co

However, the solution of this equation, accord-
ing to (27) is

2
X
T= TO (l _WtD

and the corresponding penetration depth is
0 = a,/(x't) = 2:78,/(kt). (31)

The same problem was solved by variational
techniques in [5] and [6]. The corresponding
values for penetration depth using quadratic
profiles are

5 =280J(xt) [5]
6 =297/(kt)  [6]

it is seen that there is quite satisfactory correla-
tion between all three techniques over complete
range x and ¢.

(c) Surface radiation With variable thermal pro-
perties—short time solution

The method of optimal linearization can be
used in more complex situations in which the
boundary conditions as well as the transport
equation are both nonlinear. This section will
treat the case where the flux condition depends
upon a power of the surface temperature and at
the same time, the heat capacity is a linear
function of temperature. The case with constant
thermal properties was discussed by Lardner in
[7], using variational method. The Lardner
solution will be used as the trial solution in the
case of variable thermal properties.

Let us consider the surface radiation cooling
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of a semi-infinite solid. The initial temperature
is T, while the ambient temperature is absolute
zero. The problem we wish to solve is to find the
approximate solution of partial differential
equation

oT T ,
AT) 7 = ko sz (31)
together with the nonlinear boundary condition

ko gg= — hT™on the surfacex =0 (32)

where
T
oT)=cq (1 +0 To) (33)

and m, ¢y, 6, ko and h are given constants.
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Let us find the constant parameter A in such a
way that the linear equation

oT & o*T

ot ° ox?

approximates in optimal way the nonlinear
equation (31) together with the nonlinear
boundary condition (32).

Substituting (34) into (25) and (24), performing
integration with respect to x from zero to g, and
with respect to ¢ from zero to ¢ (¢ is the range of
the small time interval for which the solution
(34) is valid), the condition 81/04 = 0 yields

_ 29 bhTR™!
A=cg [1 to (1 - m\/(koco)\/(s)ﬂ. 37)

Hence, the temperature distribution is of the
form:

Ao

bhTT

T= TO—

\/{coko [1 +o (1

_ 29 bhT )
112~ Jkoco )]}

J@

X 2

x [1—

Kot (38)

29 bhTy™!
0 [l t+o <l 112\/(’(060)\/( )jl

The Lardner asymptotic solution for ¢ = 0
and ¢ — 0 has the form
X 2
_ E)

T=T, ~(To — q) (1

bhT7 2
=T O1-——-—- 34
0= Jicaka O \/<k ) G4
a {2t
€
where
bhT}{
=Ty — (t): b=1120 (35)
1=~ Jeko
is the surface temperature, and
q; = a\/(ﬁt> ; a=268 (36)
Co

is the depth of penetration.

The penetration distance and surface tempera-
ture are of the form

. L
b
z=1- \/(1)29 (40)
\/{1 +0 [1 - m\/(tlﬂ}
where
z=q,/Ty
T = __}iTz(ﬂl l)t T, = _h_z_TZ(m 1)6 (41)
CoKo CoKo

h -
V=g T3 Vg,
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For ¢ = 0 the solution (39) and (40) are identical
with the asymptotic short time solution given
by Lardner. Figures 2 and 3 present the surface
temperature and penetration depth for ¢ =
+ 0-5 and 7, ~ 0-5. It is interesting to note that
the cooling of the semi-infinite slab proceeds
more slowly in the case ¢ > 0. For the case
¢ < 0 the situation is opposite. Unfortunately

z
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FiG. 3.

B. VUJANOVIC

this problem is not capable of an exact solution
and direct comparison is impossible.

REMARKS

The primary aim of this paper has been to
demonstrate that the method of optimal
linearization can be advantageously applied to
the heat transfer problem. This method reduces
the nonlinear boundary value problem to a
linear boundary value problem whose solution
can frequently be expressed in closed analytical
form. The results have been presented in
graphical form and comparisons have been made
with other approximate solutions whenever they
are available. Agreement in all cases was found
to be good.

In addition to the accuracy, which is most
important in any approximate solution, the
method of optimal linearization has been shown
to provide a systematic means of deducing the
temperature history.

On the basis of the examples considered here
it must be concluded that the method of optimal
linearization can serve as a useful vehicle for
obtaining approximate solutions in heat transfer
analysis.
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APPLICATION DE LA METHODE DE LINEARISATION OPTIMALE AU PROBLEME DU
TRANSFERT THERMIQUE
Résumé—On considére la génération de solutions approchées du probléme de conduction thermique non
linéaire par la méthode de linéarisation optimale. Dans quelques exemples, on recherche I'intérét de cette
méthode. On discute aussi le refroidissement par un rayonnement, 3 puissance arbitraire, d’un solide
semi-infini & propriétés dépendantes de la température.

ANWENDUNG DER OPTIMALEN LINEARISIERUNGSMETHODE AUF DAS
WARMEUBERTRAGUNGSPROBLEM

Zusammenfassung—Es wird iiber die Erzeugung von Naherungslésungen fiir das nichtlineare Wirme-

leitungsproblem unter Verwendung der Methode der optimalen Linearisation berichtet. Anhand von

Beispielen wird untersucht, welchen Vorteil diese Methode bietet. Diskutiert wird ferner der Fall der

Strahlungskithlung infolge Abstrahlung von einem halbunendlichen Korper unter Beriicksichtigung
temperaturabhingiger Materialeigenschaften.

IIPUMEHEHUE METOJA ONTUMAJIbHON JUHEAPU3ALUUN K IIPOBJEME
TEIIJIONEPEHOCA

Annoranua—C [OMOIBI0 METOA ONTUMAJBHON JMHeapHU3alMU CTPOATCH NPHUONIKEHHbIE

pelieHUA 3afayM HeJduHefiHOH TemymonpoBomHOCTM. IIpeMMyImecTBa ZAHHOrO MeTOgA MpO-

ReMOHCTPMPOBAHH HA NpuMepax. Takse 06CYKAAETCA TYUHCTOE OXIAHACHME 01y GeCKOHeY-

HOTO TBepXOrO TeJa, XapaKTePUCTUKM MAaTepHala KOTOPOr0 3aBMCAT OT TeMMIEPATYPH, a-
MOLIHOCTD M3JIYy4YeHUA MOMeT GHITh NPOUBBOILHOMN.
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